复习 ========= 汇总 ---------- 1. github - https://github.com/imhuay/Algorithm_Interview_Notes-Chinese - https://github.com/jwasham/coding-interview-university/blob/master/translations/README-cn.md 2. 2018校招算法岗面试题汇总 https://zhuanlan.zhihu.com/p/36801851 C++ ------------ 1. 虚函数 https://blog.csdn.net/fighting_coder/article/details/77187151 2. C++构造函数和析构函数能否声明为虚函数?(转载) https://www.cnblogs.com/hxb316/p/3853544.html 3. 重载、重写(覆盖)和隐藏的区别 https://blog.csdn.net/zx3517288/article/details/48976097 4. C++ STL中vector内存用尽后,为啥每次是两倍的增长,而不是3倍或其他数值?Hint::math:`1 + 2 + 1 + 4 + 1 + 1 + 1 + 8 + \cdots + n = \mathcal{O}(n)` ,每一次 push_back 操作的摊还代价为 :math:`\mathcal{O}(1)` 。 https://www.zhihu.com/question/36538542 5. 常见C++笔试面试题整理 https://zhuanlan.zhihu.com/p/69999591 Python ----------- 1. 基本数据类型 https://www.cnblogs.com/littlefivebolg/p/8982889.html 2. Python中的None https://www.cnblogs.com/changbaishan/p/8084863.html 3. 使用lambda高效操作列表的教程 https://www.cnblogs.com/mxp-neu/articles/5316557.html 4. 经典7大Python面试题 https://blog.csdn.net/qq_41597912/article/details/81459804 5. 迭代器和生成器 https://www.cnblogs.com/chongdongxiaoyu/p/9054847.html 机器学习/深度学习 --------------------------- 1. 激活函数 https://fongyq.github.io/docs/deepLearning/02_activationFunction.html 2. Batch Normalization https://fongyq.github.io/docs/deepLearning/03_batchnorm.html 3. 过拟合 https://fongyq.github.io/docs/deepLearning/03_batchnorm.html 4. 正则化项L1和L2的区别 https://www.cnblogs.com/lyr2015/p/8718104.html 5. KMeans秘籍之如何确定K值 https://blog.csdn.net/alicelmx/article/details/80991870 6. 决策树 - ID3、C4.5 https://www.cnblogs.com/coder2012/p/4508602.html - 预剪枝与后剪枝 https://blog.csdn.net/zfan520/article/details/82454814 - CART分类与回归树 https://www.jianshu.com/p/b90a9ce05b28 7. Logistic Regression https://fongyq.github.io/docs/machineLearning/01_lr.html 8. Support Vector Machine https://fongyq.github.io/docs/machineLearning/02_svm.html 9. PCA https://fongyq.github.io/docs/machineLearning/03_pca.html 论文相关 ----------------- 1. AlexNet/VGG/GoogleNet https://blog.csdn.net/gdymind/article/details/83042729 2. CNN卷积神经网络\_ GoogLeNet 之 Inception(V1-V4) https://blog.csdn.net/diamonjoy_zone/article/details/70576775 3. ResNet - Deep Residual Learning for Image Recognition https://arxiv.org/pdf/1512.03385.pdf - torchvision.models.resnet https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html#resnet101 - ResNet-50 结构 https://www.jianshu.com/p/993c03c22d52 4. ResNeXt - ResNeXt https://www.cnblogs.com/bonelee/p/9031639.html - ResNeXt算法详解 https://blog.csdn.net/u014380165/article/details/71667916 5. R-CNN系列 - RCNN(三):Fast R-CNN https://blog.csdn.net/u011587569/article/details/52151871 - 一文读懂Faster RCNN https://zhuanlan.zhihu.com/p/31426458 - 【RCNN系列】【超详细解析】 https://blog.csdn.net/amor_tila/article/details/78809791 - 实例分割模型Mask R-CNN详解:从R-CNN,Fast R-CNN,Faster R-CNN再到Mask R-CNN https://blog.csdn.net/jiongnima/article/details/79094159 - (Mask RCNN)——论文详解(真的很详细) https://blog.csdn.net/wangdongwei0/article/details/83110305 - 实例分割--Mask RCNN详解(ROI Align / Loss Fun) https://blog.csdn.net/qinghuaci666/article/details/80900882 - ROI-Align 原理理解 https://blog.csdn.net/gusui7202/article/details/84799535 - 为什么RCNN用SVM做分类而不直接用CNN全连接之后softmax输出? https://www.zhihu.com/question/54117650 6. Focal Loss(样本不均衡:正/负样本数量不均衡( :math:`\alpha` ),简单/困难样本数量不均衡( :math:`\gamma` )) .. math:: CE &=\ -y \log y_t - (1 - y) \log (1 - y_t) & &\ [\text{Cross Entropy Loss}] \\ FL &=\ -y \alpha (1 - y_t)^\gamma \log y_t - (1 - y) (1 - \alpha) y_t^\gamma \log (1 - y_t) & &\ [\text{Focal Loss}] 即 .. math:: :nowrap: $$ CE = \begin{cases} - \log y_t, & &\ y=1\\ - \log (1 - y_t), & &\ y=0 \end{cases} $$ $$ FL = \begin{cases} - \alpha (1 - y_t)^\gamma \log y_t, & &\ y=1\\ - (1 - \alpha) y_t^\gamma \log (1 - y_t), & &\ y=0 \end{cases} $$ - 损失函数改进方法之Focal Loss https://blog.csdn.net/sinat_24143931/article/details/79033538 - RetinaNet论文理解 https://blog.csdn.net/wwwhp/article/details/83317738 - Focal Loss理解 https://www.cnblogs.com/king-lps/p/9497836.html 7. FCN(Fully Convolutional Networks) - FCN学习:Semantic Segmentation https://zhuanlan.zhihu.com/p/22976342?utm_source=tuicool&utm_medium=referral - FCN于反卷积(Deconvolution)、上采样(UpSampling) https://blog.csdn.net/nijiayan123/article/details/79416764 8. FPN(Feature Pyramid Networks for Object Detection) https://www.cnblogs.com/fangpengchengbupter/p/7681683.html 9. CapsuleNet解读 https://blog.csdn.net/u013010889/article/details/78722140/ 10. 轻量级网络--MobileNet论文解读 https://blog.csdn.net/u011974639/article/details/79199306 11. 一文读懂卷积神经网络中的1x1卷积核。Hint:升维、降维、跨通道信息交互。 https://zhuanlan.zhihu.com/p/40050371 12. Image Classification Architectures - 模型,FLOP(浮点计算量),性能,参数量(表格中的参数量单位是字节,按 4 字节/浮点型数计算,需要除以 4 才得到参数个数) https://github.com/albanie/convnet-burden#convnet-burden - torchvision.models https://pytorch.org/docs/stable/torchvision/models.html 其他 -------------- 1. 理解数据库的事务,ACID,CAP和一致性 https://www.jianshu.com/p/2c30d1fe5c4e